Amelioration of nonalcoholic fatty liver disease by hepatic stimulator substance via preservation of carnitine palmitoyl transferase-1 activity.
نویسندگان
چکیده
Nonalcoholic steatohepatitis (NASH) is the progressive form of nonalcoholic fatty liver disease and so far is supposed to be related with mitochondrial impairment. Hepatic stimulator substance (HSS) has been defined as a liver-protective factor promoting hepatocyte DNA synthesis and hepatic proliferation after liver intoxication. We previously reported that HSS ameliorated hepatocyte death, probably because of its preservation of mitochondria. This study aims to explore whether HSS could protect carnitine palmitoyl transferase-1 (CPT-1), an essential enzyme responsible for β-oxidation of free fatty acids in mitochondria, from lipotoxicity, thus alleviating hepatic lipid deposition. To test this, the HSS gene was delivered into C57BL/6J mice and efficiently expressed in the liver. NASH mice were prepared with high-fat diet or methionine-choline-deficient diet. The results showed that hepatic inflammation and liver functions were alleviated in the HSS-transfected mice; meanwhile, the activity of CPT-1 was obviously protected. Moreover, oleic acid (OA) treatment resulted in remarkable lipid accumulation in HepG2 cells; this deposition was improved by HSS transfection. Simultaneously, the CPT-1 activity, which was impaired by OA treatment, was profoundly rescued in the HSS-expressing cells. CPT-1 activity was more severely impaired if the OA treatment was combined with S15176, a CPT-1 inhibitor. However, this impairment was effectively reduced by the HSS transfection, and the effect was enhanced by C75, a CPT-1 activator. Interestingly, if the cells were transfected with HSS-siRNA, the preservation of CPT-1 provided by HSS was again diminished. In conclusion, HSS reduces lipotoxicity to mitochondria most likely via preservation of CPT-1.
منابع مشابه
Amelioration of Non-alcoholic Fatty Liver Disease by Hepatic Stimulator Substance via
Title page 1 2 3 4 Amelioration of Non-alcoholic Fatty Liver Disease by Hepatic Stimulator Substance via 5 Preservation of Carnitine Palmitoyl Transferase-1 Activity 6 7 8 Weichun Xiao*, Meng Ren*, Can Zhang, Shenglan Li, Wei An¶ 9 10 Department of Cell Biology and Municipal Laboratory for Liver Protection and Regeneration 11 Regulation, Capital Medical University, 100069 Beijing China 12 13 14...
متن کاملIntake of trans fatty acids causes nonalcoholic steatohepatitis and reduces adipose tissue fat content.
We investigated the effects of dietary trans fatty acids, PUFA, and SFA on body and liver fat content, liver histology, and mRNA of enzymes involved in fatty acid metabolism. LDL receptor knockout weaning male mice were fed for 16 wk with diets containing 40% energy as either trans fatty acids (TRANS), PUFA, or SFA. Afterwards, subcutaneous and epididymal fat were weighed and histological marke...
متن کاملZerumbone, a Natural Cyclic Sesquiterpene of Zingiber zerumbet Smith, Attenuates Nonalcoholic Fatty Liver Disease in Hamsters Fed on High-Fat Diet
We investigated the effects of zerumbone, a natural cyclic sesquiterpene, on hepatic lipid metabolism in Syrian golden hamsters fed on high-fat diet (HFD). After being fed HFD for 2 weeks, hamsters were dosed orally with zerumbone (75, 150, and 300 mg kg(-1)) once daily for 8 weeks. After treatment with zerumbone, the plasma levels of total cholesterol (TC) and triglycerides (TGs) and the conte...
متن کاملCitrulline and Nonessential Amino Acids Prevent Fructose-Induced Nonalcoholic Fatty Liver Disease in Rats.
BACKGROUND Fructose induces nonalcoholic fatty liver disease (NAFLD). Citrulline (Cit) may exert a beneficial effect on steatosis. OBJECTIVE We compared the effects of Cit and an isonitrogenous mixture of nonessential amino acids (NEAAs) on fructose-induced NAFLD. METHODS Twenty-two male Sprague Dawley rats were randomly assigned into 4 groups (n = 4-6) to receive for 8 wk a 60% fructose di...
متن کاملEffects on Liver Lipid Metabolism of the Naturally Occurring Dietary Flavone Luteolin-7-glucoside
Disruptions in whole-body lipid metabolism can lead to the onset of several pathologies such as nonalcoholic fatty liver disease (NAFLD) and cardiovascular diseases (CVDs). The present study aimed at elucidating the molecular mechanisms behind the lipid-lowering effects of the flavone luteolin-7-glucoside (L7G) which we previously showed to improve plasma lipid profile in rats. L7G is abundant ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 309 4 شماره
صفحات -
تاریخ انتشار 2015